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Abstract
Recent x-ray diffraction experiments on CeB6 held at temperatures below
TQ ∼ 3.2 K are shown to be fully consistent with properties expected of
phase II that arises in the interval of temperature between TQ and TN ∼ 2.4 K.
Thomson scattering at reflections (h/2, k/2, l/2) with odd-integer Miller
indices is successfully interpreted on the basis of a distorted CsCl-type structure
which supports an antiferro-configuration of 	5-type Ce quadrupole moments.
Applied to resonant scattering at Ce L2 and L3 absorption edges the model also
agrees with available data. Intensities calculated as a function of the azimuthal
angle show a wealth of strong features which are attributed to the crystal physics
of Ce ions in the low-symmetry structure.

1. Introduction

The monovalent metal CeB6 (cerium hexaboride) is an interesting example of a dense Kondo
compound with a simple local f-electron state, and its physical properties have been extensively
studied with a variety of experimental techniques. Two recent developments have refreshed
the interest in CeB6. First, NMR [1, 2] and neutron diffraction [3] data gathered in phase II
(TN < T < TQ) have been reconciled, by showing that the Ce quadrupole–quadrupole and
octupole–octupole interactions are similar in magnitude [4]. Secondly, x-ray diffraction
experiments have been performed [5, 6] with a view to improving our knowledge of the
charge distribution in phase II, which is believed to support an antiferro-configuration of Ce
quadrupoles [4].

Cerium hexaboride at room temperature crystallizes in a CsCl-type structure (space group
Pm3̄m, no 221) in which boron octahedra replace Cl ions. In this structure, Ce ions occupy
sites with symmetry Oh and there is no ordering of quadrupoles. Evidence of a lower symmetry
at Ce sites, and a different space group, comes from the observation [7] at low temperature
of J + 1/2 = 3 levels in the Ce crystal potential, for Kramers ions with a cubic environment
are not expected to obey this rule. More direct evidence is the observation [6] of Thomson
scattering in phase II at (h/2, k/2, l/2), where h, k and l are odd integers, which are reflections
not indexed by the space group 221. The intensity of the Bragg reflection (5/2, 3/2, 3/2) as a
function of temperature is observed to increase below TQ = 3.19 K, which indicates that it is
an order parameter of a structural phase transition at TQ. Additionally, resonance enhancement
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of (h/2, k/2, l/2) intensities is observed [5, 6] as the primary x-ray energy is varied in the
immediate vicinity of Ce L2 and L3 absorption edges.

We report a first interpretation of the available x-ray diffraction data and look at possible
future experiments [6] that can have a significant impact on our knowledge of the structural
and magnetic properties of CeB6. The x-ray diffraction data are found to be consistent with
a reduction of symmetry at TQ, compatible with changes in B6 octahedra which preserve a
cubic Ce lattice. A minimal structure allows two types of octahedron, and if they are nearest
neighbours they form two interpenetrating face-centred cubic lattices displaced by a cell edge.
Ce ions occupy sites with orthorhombic symmetry and an ordering of Ce quadrupoles is
allowed. Use of the two-sublattice model to describe phase II is a working hypothesis which
is supported by experimental data. Various mechanisms for the lattice distortion that sets in at
TQ have been discussed [7].

Sections 2 and 3 report our findings for nonresonant and resonant x-ray diffraction based
on the distorted CsCl-type structure. Additional details on the calculations are relegated to an
appendix. Conclusions are gathered in section 4.

2. Nonresonant diffraction

The amplitude of Thomson scattering is proportional to the overlap of the polarization vectors
for the primary (ε) and secondary (ε′) beams of x-rays. The amplitude in question is ε·ε′Fc(k),
where the charge structure factor of an ion,

Fc(k) =
〈∑
j

exp(ik · Rj )

〉
, (2.1)

and k = q − q′ is the change on scattering in the wavevectors. Angular brackets in (2.1)
denote a thermal or, equivalently, a time average of the enclosed quantity, and the sum on j
is over all electrons in the ion. In the exponential the dependences on k̂ = k/k and electron
orientation R̂j are separated by application of a standard identity [8] that employs spherical
Bessel functions jK(kR) and spherical harmonics YKq (k̂) and YKq (R̂j ). One finds

Fc(k) = (4π)1/2
∑
Kq

〈jK〉YKq (k̂)∗〈T Kq 〉
c
, (2.2)

where 〈jK〉 is the Bessel function transform of the electron radial density. The atomic tensor
for charge scattering 〈T Kq 〉

c
= iK(4π)1/2

∑
j 〈YKq (R̂j )〉. When the unit cell contains several

ions, at positions {d}, the corresponding structure factor is derived from (2.2) by substituting
for 〈T Kq 〉

c
the quantity

�K
q =

∑
d

exp(ik · d)〈T Kq 〉
c,d
. (2.3)

For phase II we adopt a chemical structure, described in the introduction, which contains
two sublattices of B6 octahedra and Ce ions at sites on a cubic lattice with orthorhombic
symmetry. The distorted structure is compatible with space group Fmmm(69) with Ce ions
at sites 8(f ) and a point-group symmetry 222 (D2). The phase transition that reduces space
group 221 to space group 69 is not allowed to be continuous in Landau and renormalization
group theories [9]. In our model calculation we assume that distortions of B6 octahedra
are extremely small. This, coupled with weak scattering by a B ion, leads to a negligible
contribution from B ions at Bragg reflections of interest.

With our model of CeB6, diffraction at k = (h/2, k/2, l/2) is described by

�K
q = {1 + (−1)q}{1 − eiπq/2}{〈T Kq 〉

c
− (−1)K〈T K−q〉c}. (2.4)
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In arriving at (2.4) we have used operations that relate Ce ions in a cell of the two-sublattice
model. These operations [10] include reflection in planes normal to the x and y axes, namely,
〈T Kq 〉 → (−1)K〈T K−q〉 and 〈T Kq 〉 → (−1)K+q〈T K−q〉. The other relation is rotation by π/2 about
the z-axis, which merely multiplies 〈T Kq 〉 by the phase exp(iπq/2).

The finding �K
q=0 = 0 means that scattering at (h/2, k/2, l/2) is caused by anisotropy in

the Ce charge distribution. The orthorhombic symmetry of Ce ion sites restricts the projection
q to even integers [11], and �K

q can be different from zero for q = ±2,±6, . . . . Moreover,
the atomic tensor for charge scattering, discussed in the appendix, is zero for the rank K
equal to an odd integer and thus �K

−q = −�K
q . Since 〈T K−q〉 = (−1)q〈T Kq 〉∗ the allowed

�K
q = 8Im 〈T Kq 〉

c
. These features of �K

q describe an array of multipoles of even rank that
alternate in sign on moving between nearest-neighbour Ce sites. The face-centred cubic arrays
of charge multipoles are nicely illustrated by Nakao et al [5].

In the application of (2.4) to Ce ions the maximum rank K = 4, and the structure factor
for Thomson scattering is a linear combination of a quadrupole and a hexadecapole. We find,
for k = (h/2, k/2, l/2),

Fc(k) = 8
√

30k̂x k̂y{〈j2〉〈T 2
+2〉

′′
+ 1

2

√
3〈j4〉(7k̂2

z − 1)〈T 4
+2〉

′′} (2.5)

where 〈T 2
+2〉′′ = Im 〈T 2

+2〉 etc. The spherical quadrupole tensor can be written in terms of purely
real Cartesian components of a rank two tensor,

〈T 2
+2〉 = 1√

6
〈T 2
xx − T 2

yy + 2iT 2
xy〉, (2.6)

with

〈T 2
+2〉

′′ = (2/3)1/2〈T 2
xy〉. (2.7)

There is no unique decomposition of a hexadecapole in terms of Cartesian components of a
rank four tensor. In a CsCl-type structure 〈T 2

xy〉 belongs to the irreducible representation 	5,
whereas in Fmmm it belongs to 	3.

On turning to an interpretation of data reported by Yakhou et al [6] for (5/2, 3/2, 3/2),
(5/2, 1/2, 1/2) and (7/2, 1/2, 1/2), the first thing to note about Fc(k) is that the factor
(7k̂2

z − 1) has opposite signs for k = l = 3/2 and 1/2. The sign difference is a possible
explanation of the observation that Thomson intensities at (5/2, 3/2, 3/2), and (5/2, 1/2, 1/2)
and (7/2, 1/2, 1/2) differ by a factor of 100.

To go further with an interpretation, we ascribe Thomson scattering in phase II of CeB6

to the f state of Ce3+ (6F), and construct the ground-state Kramers doublet from the 	8

quartet. Using the notation adopted by Shiba et al [4], we find a ground state consistent
with orthorhombic symmetry and a saturation magnetic moment [3] = 1µB is spanned by

|ψ〉 = 1√
2
{|+ ↑〉 + eiδ|− ↑〉}, |ψ̄〉 = 1√

2
{|+ ↓〉 + e−iδ|− ↓〉}, (2.8)

where δ is an unknown phase angle. (Note that the choice δ = π/2 makes |ψ〉 an eigenfunction
of T 2

xy .) We then find

〈T 2
+2〉

′′
c = 1

7 (2/5)
1/2 sin δ, 〈T 4

+2〉
′′
c = (5/

√
3)〈T 2

+2〉
′′
c , (2.9)

and the corresponding structure factor for Thomson scattering is

Fc(k) = 16
√

3

7
k̂x k̂y sin δ

{
〈j2〉 +

5

2
〈j4〉(7k̂2

z − 1)

}
. (2.10)

By way of orientation to magnitudes, (Fc)2 evaluated for the reflection (5/2, 3/2, 3/2) and
sin δ = 1 is estimated [12] to have a value of the order of 6 × 10−5 relative to the intensity of
a basic structure reflection at the same sin θ/λ.
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Values of Fc(k) are consistent with data [6] gathered using π -polarized x-rays of
energy = 5.68 keV. The factor multiplying the unknown quantity sin δ on the right-hand
side of (2.10) has the value [12] 0.36(−0.49), 0.08(0.06) and 0.03(−0.77) for reflections
(5/2, 3/2, 3/2), (5/2, 1/2, 1/2) and (7/2, 1/2, 1/2), respectively. To find the value which
represents the observed intensity one multiplies these figures by the x-ray polarization factor
ε · ε′ = cos(2θ) in which θ is the Bragg angle, and its value appears in brackets behind the
foregoing estimates of Fc(k). The intensity at (5/2, 3/2, 3/2) is by far the largest, in accord
with the observation, and this result comes from favourable values of cos(2θ) and Fc(k). The
latter is very small for (7/2, 1/2, 1/2), because of a near cancellation of contributions with
K = 2 and 4, while for (5/2, 1/2, 1/2) the two factors cos(2θ) and Fc(k) contrive to give
an exceptionally small intensity. The reflection (5/2, 3/2, 3/2) was also measured at a lower
x-ray energy = 5.218 keV. Changing the energy does not change Fc(k) but there is a change
in intensity through cos(2θ).

Absolute values of atomic tensors are rather uncertain. In addition to a quite major
uncertainty arising from a poor knowledge of the Ce crystal potential, Kondo fluctuations
and the dynamical Jahn–Teller effect have an influence which is difficult to assess. Thomson
scattering experiments can improve our knowledge of these effects because intensities are on
an absolute scale, unlike signals from resonance-enhanced diffraction.

Turning to the temperature dependence of nonresonant Bragg diffraction it is noted that
with a cubic site for a Ce ion the quadrupole and hexadecapole in Fc(k) are zero. With this
in mind, our explanation of Thomson scattering appearing at reflections (h/2, k/2, l/2) as the
sample temperature is lowered through TQ is in terms of a structural phase transition, heralded
by a reduction in site symmetry and concomitant non-zero values of 〈T K+2〉′′c . A simple non-
ferroelectric soft-mode phase transition has the same critical exponents as the Ising model and
the corresponding exponent β ∼ 0.33 is consistent with data [5,13]. Nagao and Igarashi [14]
give a mean-field treatment (β = 0.5) of a particular model [4] of CeB6, and also consider the
influence of an external magnetic field. In our model, the diffracted intensity from the distorted
crystal arises from a quadrupole, and a hexadecapole whose contribution to scattering can be
made small by working at reflections with (7k̂2

z −1) ∼ 0, e.g. (7/2, 1/2, 3/2). With the sample
temperature taken below TN there is additional intensity, which might be due to diffraction by
magnetic moments.

The four amplitudes for diffraction by a magnetic crystal are denoted byGst where s and t ,
respectively, label states of secondary and primary polarization. In keeping with a conventional
notation, σ denotes polarization normal to the plane of scattering and π polarization lies in the
plane. Compact expressions forGst are achieved by using four complex partial amplitudes [15]
such that

Gσ ′σ = 〈β〉 + 〈α3〉, Gπ ′π = 〈β〉 − 〈α3〉,
Gσ ′π = 〈α1〉 − i〈α2〉, Gπ ′σ = 〈α1〉 + i〈α2〉.

(2.11)

Here, 〈α1〉 and 〈α2〉 are purely magnetic and vanish if the spin and orbital magnetizations are
normal to the plane of scattering. 〈α3〉 is a linear combination of charge (Fc) and orbital (Fl)
structure factors, while 〈β〉 is a linear combination of Fc, Fl and the structure factor for spin
magnetism, Fs . If the spin and orbital magnetizations lie in the plane of scattering 〈α3〉 and
〈β〉 are non-magnetic. With regard to orbital magnetism, the amplitudes are independent of
the projection of Fl on the scattering wavevector, k.

For moderate values of k, Fs and Fl can be constructed from the spin and orbital magnetic
moments, to a good approximation. In the event that scattering is by lanthanide ions with
properties adequately described by states taken from one manifold of J -states, Fs and Fl are
proportional to the structure factor of the total angular momentum FJ , namely, Fs = (g−1)FJ
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and Fl = (2 − g)FJ /2 where g is the Landé factor. For general k these limiting forms of the
magnetic structure factors might not provide a satisfactory interpretation of data. In particular,
the limiting forms of Fs and Fl do not contain any information on octupole moments [4]
which are believed to be significant in CeB6. An approach to such features of magnetic x-ray
diffraction is offered by theoretical developments made for magnetic neutron diffraction [16].

3. Resonant diffraction

With the primary x-ray energy tuned to a Ce absorption edge structure factors for resonant
diffraction are derived directly from�K

q , given in (2.4), after replacing 〈T Kq 〉
c

by the appropriate
atomic tensor. Atomic tensors for resonant scattering [17] depend on the quantum numbers
for the specific absorption edge, and they are different for E1 (electric dipole) and E2 (electric
quadrupole) absorption events. Absorption at the L2 and L3 edges makes E1 events sensitive
to Ce states with d-like character, and most likely 5d states about which we know very little.
E2 events at L2 and L3 absorption edges are a direct probe of the 4f valence state. In an E1
(E2) event the maximum rank K = 2(4), and in the absence of long-range magnetic order, or
an applied magnetic field, tensors with an odd rank are zero. Thus, E1 enhanced diffraction at
(h/2, k/2, l/2) by phase II of CeB6 is described by one tensor of rank two that we shall denote
by 〈T 2

q 〉
5d

. Moreover, from properties of �K
q discussed following (2.4), we know that for our

model of CeB6 only one component of 〈T 2
q 〉

5d
contributes to scattering, namely, the imaginary

part of 〈T 2
+2〉5d .

While it is often the case that E1 events are much more intense than E2 events, at
present, there are insufficient data for CeB6 to be confident that E2 events are not a significant
contribution to the diffracted signal. This is an important issue, because E2 events are a direct
probe of the 4f valence state, that might be settled by performing azimuthal-angle scans [6] in
which the crystal is rotated about the Bragg vector. We also predict that such scans on CeB6

are very different for unrotated and rotated states of polarization.
Intensities as a function of azimuthal angle ψ derived from the result (2.4) for �K

q are
displayed in figures 1 and 2. In all cases, k = (5/2, 3/2, 3/2) and the origin ψ = 0 places (0,
1̄, 1) normal to the plane of scattering and parallel to the σ component of polarization. Intensity
in scattering channels in which the primary polarization is not rotated is twofold periodic in
ψ , and we display results for ψ in the range 0◦ < ψ < 180◦.

In the case of diffraction enhanced by an E1 event the amplitude is expressed in units of
8〈T 2

+2〉′′5d . By way of an example, the E1 structure factor for σ ′σ is

Fσ ′σ (k) = − sin2 β sin(2γ ), (3.1)

where the Euler angles β and γ are determined by

cosβ =
(

cosψ − 5√
43

sinψ

)/√
2, cot γ = (5 +

√
43/ tanψ)/6. (3.2)

The coefficients in these equations forβ and γ are determined by k̂ and the choice of origin. (To
illustrate this point, the equations that determine β and γ in (3.1) when k = (1/2, 1/2, 1/2)
and ψ = 0 finds (1, 1, 2̄) normal to the scattering plane are cosβ = −(2/3)1/2 cosψ and
tan(γ + π/4) = √

3 tanψ .) The quantity displayed in figure 1 is |Fσ ′σ (k)|2. Equations for
Fπ ′σ (k) and Fπ ′π (k) depend on three Euler angles and the Bragg angles and, in view of their
complexity, we do not write them out.

Looking at figure 1 we see that intensities as a function of azimuthal angle are quite
different in the three channels of scattering. With the origin set by (0, 1̄, 1), one finds atψ = 0
Fσ ′σ (k) = 0 and approximately equal intensities in the π ′σ and π ′π channels. After adjusting
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Figure 1. The three panels show intensity at the reflection (5/2, 3/2, 3/2) which is enhanced by an
E1 event at the Ce L3 absorption edge (Bragg angle θ = 59.1◦). Intensity in channels of scattering
with unrotated polarization is twofold periodic with respect to the azimuthal angleψ that measures
rotation of the crystal around the Bragg wavevector.
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Figure 2. Intensity at (5/2, 3/2, 3/2) in the unrotated π -channel of scattering with intensity
enhanced by an E2 event at the Ce L2 (dashed curve, θ = 52.8◦) and L3 (solid curve, θ = 59.1◦)
absorption edges. To aid presentation, intensity at the L2 edge is reduced by a factor of 2.5; the
maximum L2 intensity, at ψ = 140◦, is six times the L3 intensity at ψ = 70◦.

measured intensities for nonresonant diffraction, our findings for π ′σ and π ′π intensities are
in accord with observations at the Ce L3 adsorption edge [6]. Away from ψ = 0, maximum
intensities in the three channels are about the same but they occur at distinctly different values
ofψ . Because the atomic tensor is a common factor in the three structure factors their variation
with ψ , and differences between them, is fixed by the crystal physics, namely, the elements of
spatial symmetry which enter�K

q and the direction of the Bragg wavevector relative to crystal
axes.

The situation is different for diffraction enhanced by an E2 event because structure factors
depend on the ratio of tensors of rank four and two. Using results contained in the appendix
we find at the L2 edge

〈T 4
+2〉

′′
/〈T 2

+2〉
′′ = 5/

√
3,

and at the L3 edge the ratio is −16/
√

3. The large variation in the ratio is caused by 〈T 2
+2〉′′

which is exceptionally small at the Ce L3 edge; explicit values, (A.8) and (A.9), are derived
from the state |ψ〉 of Ce3+ which is given in (2.8). |Fπ ′π (k)|2, as a function of ψ , at the L2 and
L3 absorption edges is shown in figure 2. Maximum intensities differ by a factor of six, and
they occur at different values of the azimuthal angle.

4. Conclusions

We have explored some features in Bragg diffraction patterns from CeB6 created by a structural
transition at TQ. All observations to hand are consistent with a working hypothesis in which
the room-temperature cubic CsCl-type structure (space group 221) distorts to a structure
compatible with the space group Fmmm(69). Observed features that are consistent with
the hypothesis include: a structual phase transition [6]; Bragg peaks (h/2, k/2, l/2) where
Miller indices are odd integers [6]; J +1/2 = 3 energy levels [7] in the Ce crystal potential; Ce
quadrupole moments [4,13] with	5-type symmetry; a configuration of quadrupole moments in
which moments on nearest-neighbour Ce sites have opposite signs [5]; Thomson intensities [6]
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which vary strongly with h, k and l; the resonant enhancement of diffraction at Ce L2 and L3

absorption edges [5, 6].
Because structure factors for resonant scattering are very sensitive to properties of the

resonant ions which are determined by crystal physics azimuthal angle scans (rotation of the
crystal about the Bragg wavevector) are potentially very interesting [6]. With this in mind, we
have calculated azimuthal-angle scans on the basis of the successful interpretation of Thomson
scattering from CeB6 held in phase II (TN < T < TQ). Calculated structure factors, for E1
and E2 events, show a wealth of strong features as functions of the azimuthal angle and the
x-ray polarization and beg experimental observation.

While an applied magnetic field causes a significant change in TQ diffracted intensities
will not be much affected, because the structure factor (2.4) is robust with respect to modest
magnetic fields. Such fields will only slightly modify atomic tensors of even rank and induce
a relatively weak rank-three tensor (octupole).
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Appendix

A matrix element of an arbitrary spherical tensor T Kq between atomic states |JM〉 and |J ′M ′〉
(for brevity of notation we suppress in these states the quantum numbers S, L, ν etc) is [8]

〈JM|T Kq |J ′M ′〉 = (−1)J−M
(

J K J ′

−M q M ′

)
(J‖T (K)‖J ′) (A.1)

where the (purely real) reduced matrix element (J‖T (K)‖J ′) can depend on all quantum
numbers apart from the projectionsM , q andM ′(M = q +M ′). Using (A.1) one obtains mean
values of T K+2 for the state |ψ〉 of Ce3+ which is defined in (2.8):

〈T 2
+2〉

′′ = sin δ(J‖T (2)‖J )/2
√

210, (A.2)

and

〈T 4
+2〉

′′
/〈T 2

+2〉
′′ = 10(J‖T (4)‖J )

3(J‖T (2)‖J ) . (A.3)

For Thomson scattering we have introduced a tensor based on a spherical harmonic,
namely,

〈T Kq 〉
c
= iK(4π)1/2

〈∑
j

YKq (R̂j )

〉
. (A.4)

Intensity collected at space-group-forbidden reflections is described by projections q > 0,
and participating charge is in the valence shell. The corresponding reduced matrix element is
conveniently expressed in terms of a unit reduced matrix element that depends on all quantum
numbers needed to specify the valence shell. Additionally, the charge reduced matrix element
contains the one-electron reduced matrix element of a spherical harmonic. We find

(J‖T (K)‖J )c = iK
√

8π(l‖Y (K)‖l)W(0K)K, (A.5)
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and the right-hand side is zero for K an odd integer. In (l‖Y (K)‖l) the maximum K is set
by the angular momentum of the one-electron state, l, and K � 2l. The unit atomic matrix
element W(0K)K is zero for K larger than 2J . Results given in (2.9) are derived from (A.2),
(A.3) and (A.5).

Turning to matrix elements needed for diffraction enhanced by an E2 event, reduced matrix
elements for Ce3+ are [17]

(J‖T (2)‖J ) = 2
49 (

6
5 )

1/2[−(2J̄ + 1)± 31
9 ], (A.6)

and

(J‖T (4)‖J ) = 11
147 (

1
10 )

1/2[−(2J̄ + 1)± 76
11 ]. (A.7)

Here J̄ = 1
2 (

3
2 ) for the L2 (L3) absorption edge and the negative (positive) sign. At the L2

edge,

〈T 2
+2〉

′′ = − sin δ/45
√

7, (A.8)

and at the L3 edge,

〈T 2
+2〉

′′ = − sin δ/441
√

7. (A.9)
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